
Deep Encoders with Auxiliary Parameters for Extreme
Classification

Kunal Dahiya
∗

kunalsdahiya@gmail.com

IIT Delhi

India

Sachin Yadav

t-sacyadav@microsoft.com

Microsoft Research

India

Sushant Sondhi

sushantsondhi@gmail.com

IIT Delhi

India

Deepak Saini

desaini@microsoft.com

Microsoft

USA

Sonu Mehta

someh@microsoft.com

Microsoft Research & IIT Delhi

India

Jian Jiao

Jian.Jiao@microsoft.com

Microsoft

USA

Sumeet Agarwal

sumeet@iitd.ac.in

IIT Delhi

India

Purushottam Kar

purushot@cse.iitk.ac.in

IIT Kanpur

India

Manik Varma

manik@microsoft.com

Microsoft Research

India

ABSTRACT
The task of annotating a data point with labels most relevant to it

from a large universe of labels is referred to as Extreme Classifica-

tion (XC). State-of-the-art XCmethods have applications in ranking,

recommendation, and tagging and mostly employ a combination

architecture comprised of a deep encoder and a high-capacity clas-

sifier. These two components are often trained in a modular fashion

to conserve compute. This paper shows that in XC settings where

data paucity and semantic gap issues abound, this can lead to sub-

optimal encoder training which negatively affects the performance

of the overall architecture. The paper then proposes a lightweight

alternative DEXA that augments encoder training with auxiliary

parameters. Incorporating DEXA into existing XC architectures re-

quires minimal modifications and the method can scale to datasets

with 40 million labels and offer predictions that are up to 6% and

15% more accurate than embeddings offered by existing deep XC

methods on benchmark and proprietary datasets, respectively. The

paper also analyzes DEXA theoretically and shows that it offers

provably superior encoder training than existing Siamese training

strategies in certain realizable settings. Code for DEXA is available

at https://github.com/Extreme-classification/dexa.

CCS CONCEPTS
• Computing methodologies→Machine learning; Supervised
learning by classification.

∗
Part of work done while the author was at Microsoft

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599301

KEYWORDS
Extreme multi-label learning; large-scale learning; deep encoders;

sponsored search; product recommendation

ACM Reference Format:
Kunal Dahiya, Sachin Yadav, Sushant Sondhi, Deepak Saini, Sonu Mehta,

Jian Jiao, Sumeet Agarwal, Purushottam Kar, and Manik Varma. 2023. Deep

Encoders with Auxiliary Parameters for Extreme Classification. In Proceed-
ings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3580305.3599301

1 INTRODUCTION
Overview: Given a data point and a large universe of labels, the

task of identifying the subset (i.e., one or more) of labels most rel-

evant to that data point is referred to as Extreme Classification

(XC). It is notable that XC is distinct from, and indeed generalizes,

multi-class classification where the data point must be annotated

with a single label or class. Several tasks in ranking, recommen-

dation and tagging applications can be cast as XC problems and

several applications of this primitive have been identified in recent

years in areas such as recommending related products [15, 33, 36],

document categorization and tagging [2, 9, 60], search and online

advertisement [14, 15, 22, 41], and recommendation related queries

in search engines [9, 21]. A notable class of applications are short-
text applications where data points and labels are endowed with

short textual descriptions containing 3-10 tokens. Applications in

areas such as web-search, query rewriting, related-query recom-

mendation, related-product recommendation and product search

fall in this category. In these applications, data points and labels

are product titles, webpage titles or user queries which are indeed

short pieces of text. These applications have attracted increased

interest in recent years [9, 13, 15, 33, 36, 48].

General Challenges in XC: There are certain challenges pre-

sented by most XC settings. Most applications where XC is applied

require real-time responses and thus, the set of relevant labels for a

test data point must be identified within milliseconds. Similarly, in

most applications where the universe of labels is in the millions, an

https://github.com/Extreme-classification/dexa
https://doi.org/10.1145/3580305.3599301
https://doi.org/10.1145/3580305.3599301

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kunal Dahiya et al.

ℰ𝜽 ℰ𝜽

score

data point label

ℰ𝜽 ℰ𝜽

score

data point label

ℰ𝜽 ℰ𝜽
𝜼𝑙

𝐰𝑙

ℱ score

data point label

(a) (b)
Module I

Module II

ℰ𝜽 ℰ𝜽
𝒂𝒌

ො𝐳𝑙

score

data point label 𝒍

ℰ𝜽ℰ𝜽

ො𝐳𝑚

score

data pointlabel 𝒎

(c)
𝐶 𝑙 = 𝐶 𝑚 = 𝑘

ℰ𝜽 ℰ𝜽
𝜼𝑙

𝐰𝑙

ℱ score

data point label 𝒍

ℰ𝜽 ℰ𝜽
𝜼𝑚

𝐰𝑚

ℱ score

data point label 𝒎

DEXA

Figure 1: A depiction of the architectural modification introduced by DEXA. The 3 vertical panels denote 3 distinct training
styles. (a) Encoder-only Models e.g. [31, 56]– these models do not incorporate a classifier and make predictions based on encoder
embeddings alone. Training consists of a single module. (b) Encoder + Classifier Models e.g., [14, 61] – these incorporate an
encoder and a classifier. Training consists of two modules. The module I trains the encoder alone using a surrogate task, say
using Siamese training itself whereasmodule II incorporates classifiers by freezing the encoder and perturbing label embeddings
with correction terms [[[𝑙 , one per label. (c) DEXA’s model – this incorporates shared auxiliary vectors in module I itself. Notice
that the two modules in DEXA are more similar to each other than the two modules for (b). This makes transitioning across the
two models a smoother process and reduces distortions in encoder training. Training proceeds in two modules with the first
module using shared auxiliary vectors while the second module give individual correction terms to each label.

overwhelmingly large majority of the labels are tail labels which
occur infrequently during training making it challenging to train

accurate classifier architectures. Training is made even more chal-

lenging by the fact that applications with millions of labels also

usually offer training sets with millions of training data points.

Training on all data point-label pairs is usually infeasible, making

some form of negative sampling necessary [18, 18, 34, 46, 47, 56].

Semantic Gap in XC: XC methods also face application-specific

challenges. In contemporary XC applications, it is common to ex-

pect both data points and labels to be endowed with textual de-

scriptions. A straightforward strategy in this case would be to use

an encoder to embed both data points and labels in a shared space

and perform training such that related data point-label pairs are

embedded close-by. Then at inference time, the nearest neighbors

of the embedding of the test data point could be used to predict

its related labels. This strategy is indeed used in Siamese training

methods [13, 56]. However, this approach is expected to suffer if

the textual descriptions are not descriptive enough which makes it

challenging for an encoder to bring related data points and labels

close to each other in the embedding space. We refer to this as

a semantic gap in the label description. Semantic gaps are espe-

cially common in short-text applications where label descriptions

are extremely short. However, all XC applications present some

degree of semantic gap. Table 10 presents an example where the

Wikipedia document titled “Constitutional reforms of Julius Caesar”

where the textual description may not be sufficient to predict re-

lated pages such as ‘Acta Senatus’
1
. To overcome this, XC methods

introduce a high-capacity classifier [9, 24, 36] such as 1-vs-all mod-

els [8, 9, 13, 49] where each label is endowed with a linear classifier

that acts on the embedding of a data point. It is notable that the

use of alternate embedding-only architectures such as using a sepa-

rate encoder to encode labels (dual encoders) cannot by themselves

1
reform of recording and issuing minutes of discussions and decisions of the Roman

Senate

address the semantic gap completely as label representations in a

dual encoder still depend on label text alone.

Challenges in XC Training: The introduction of classifier ar-

chitectures such as 1-vs-all increases model capacity but also makes

joint training challenging, especially on a single GPU. Modular

training strategies are a popular workaround [8, 13, 15, 61] wherein

the encoder is first trained by itself on a surrogate task and frozen.

Subsequently, the classifier architecture is trained with respect to

this frozen encoder and optionally, a few epochs of joint training

are performed. This approach, along with other strategies such as

negative mining, make training fairly scalable and XC models can

be trained on tasks with several millions of labels on a single GPU.

However, this paper argues that this strategy introduces distortion

into encoder training and offers suboptimal performance.

Contributions: This paper makes six key contributions:

(1) The paper points out that the semantic gap in XC applications,

especially short-text applications, can lead to distorted training

in the first modular step where the encoder is trained solo.

(2) The paper introduces a light-weight alternative DEXA that

augments the encoder with auxiliary parameters so that label

representations are not constrained by label text alone.

(3) DEXA can be readily incorporated into existing XC architec-

tures with minimal modifications (see Table 5).

(4) The paper outlines training strategies with the DEXA modifica-

tion and shows how classifier architectures can still be utilized.

Implementations are presented that offer training on datasets

with upto 40 million labels on a single GPU.

(5) DEXA offers provably superior performance than traditional

Siamese training in certain realizable settings.

(6) On benchmark and proprietary datasets, DEXA’s embeddings

offer respectively 6% and 15% more accurate performance than

embeddings offered by existing XC methods. Using DEXA en-

tails minimal overheads on the training time and no overhead

on model size (see Table 8).

Deep Encoders with Auxiliary Parameters for Extreme Classification KDD ’23, August 6–10, 2023, Long Beach, CA, USA

2 RELATEDWORKS
Early XCWorks – Fixed Features: XC models have undergone

radical transformation in recent years, mostly due to the successful

inclusion of deep encoder architectures [54]. The earliest XCmodels

were reliant on sparse bag-of-words features and later graduated to

using pre-trained dense features. The focus of model training was

solely on training an accurate and scalable classifier architecture [1–

4, 6, 21, 21–23, 27, 35, 39–43, 52, 57].

Task-specific Features – Siamese Training: Contemporary

XC models mostly use deep learnt, task specific features. As men-

tioned in Section 1, having access to textual descriptors for both

data points and labels allows us to train encoders that embed both

into a shared embedding space such that related data points and

labels are embedded in close proximity of each other. A number of

works have explored this direction. For instances, TwinBERT [31]

takes a large, pre-trained transformer model, fine-tunes it on ad re-

trieval tasks and then distils the resulting model. ANCE [30, 56] and

RocketQA [45] use similar Siamese-style architectures but focus

on developing effective negative sampling techniques to accelerate

training. Note that these works do not utilize classifier architectures

and rely on encoder embeddings alone to perform prediction.

Encoder+Classifier Models: Several works have established
that the inclusion of classifier architectures into the model in addi-

tion to the encoder gives sustained and significant boosts to model

accuracy. This boost is especially large on short-text applications in-

dicating a large semantic gap which does not allow encoders to offer

good performance by themselves. A large variety of encoder archi-

tectures (bag-of-embeddings, CNNs, LSTMs and transformers) and

classifier architectures (1-vs-all, trees) have been used. Leading deep

XCmethods include XT [55], AttentionXML [60], APLC-XLNet [59],

Astec [15], XR-Transformer [61], SiameseXML [13], LightXML [24],

CascadeML [28] and ELIAS [19]. Deep architectures have also been

used to incorporate label metadata such as label-graphs [38, 49] or

multi-modal label data [37].

Model Training: When training with millions of training data

points and millions of labels, training on all data point-label pairs

becomes infeasible irrespective of the loss function being used

or whether using an encoder-only model or an encoder+classifier

architecture. Since the number of relevant labels per data point

is usually small, the focus shifts on finding for each data point, a

small set of labels that are irrelevant for that data point but which

included in training, give most useful signals to the model. A variety

of such hard negative mining models have been explored in recent

years including simple techniques such as random sampling [34], in-

batch sampling [10, 13, 17, 18, 20] and more involved methods that

use nearest neighbor data structures or maximum inner product

search (MIPS) data structures [32] to identify hard-negatives for a

data point [13, 56, 60, 61]. Furthermore, the use of modular training

strategies is popular with a surrogate task being used to pre-train

the encoder separately followed by classifier training with a now-

fixed encoder [9, 13, 15, 25, 60, 61]. Learning the shared encoder

in a Siamese fashion can provide an accurate representation for

data-scarce tail labels. Modular training can also be efficient in

terms of compute (as only encoder or classifier need to be updated

in an iteration and not both) as well as memory (at any point of

time, optimizers such as Adam need to store first and second order

moments for either the encoder or classifier but not both).

3 PROBLEM SETTING
Notation: Let 𝐿 be the total number of labels in the application.

Note that the label set remains same across training and testing. Let

x𝑖 , z𝑙 ∈ X be the textual descriptions of the data point 𝑖 and label

𝑙 respectively. The training set is comprised of 𝑁 data points and

𝐿 labels as D := {{x𝑖 , y𝑖 }𝑁𝑖=1
, {z𝑙 }𝐿𝑙=1

}. For each data point 𝑖 ∈ [𝑁],
its ground truth label vector is y𝑖 ∈ {−1, +1}𝐿 , where 𝑦𝑖𝑙 = +1 if

label 𝑙 is relevant to the data point 𝑖 and otherwise 𝑦𝑖𝑙 = −1.

Model Architecture: We assume that an encoder E\\\ : X →
S𝐷−1

is used to embed data points and labels with\\\ being trainable

parameters of the encoder. S𝐷−1
denotes the 𝐷-dimensional unit

sphere, i.e., the encoder provides 𝐷-dimensional, unit norm embed-

dings. For simplicity, assume an 1-vs-all-style classifier architecture

asW def

= {w𝑙 }𝑙∈[𝐿] where w𝑙 is the classifier for label 𝑙 .
Making Joint Training Scalable: A straightforward way to

jointly train both the encoder \\\ and the classifierW architectures

could have been to utilize a loss function of the following kind

min

\\\,W
L(\\\,W) =

𝑁∑︁
𝑖=1

∑︁
𝑙 :𝑦𝑖𝑙=+1
𝑚:𝑦𝑖𝑘=−1

[w⊤𝑚E\\\ (x𝑖) −w⊤𝑙 E\\\ (x𝑖) + 𝛾]+, (1)

which trains a data point 𝑖 with respect to every (relevant, irrelevant)

label pair, encouraging the classifier score for the relevant label to

be higher than that of the irrelevant label by a margin 𝛾 . Usually

the number of relevant labels per data point is around O (log𝐿)
[5] which means that this summation contains Ω (𝑁𝐿 log𝐿) terms

which is prohibitive when training with millions of data points and

millions of labels. In an effort to reduce this time complexity, two

steps are usually taken that are discussed below.

Hard Negative Mining: Instead of training a data point with

respect to all its irrelevant labels, most of whom may not even

provide useful signals to the model, training is only done with

respect to a subset of O (log𝐿) irrelevant labels which are expected

to provide the most informative signals to model training. For

example, ANCE [56] chooses to train on the hardest-to-predict

irrelevant labels. The loss function used would thus look like

min

\\\,W
L(\\\,W) =

𝑁∑︁
𝑖=1

∑︁
𝑙 :𝑦𝑖𝑙=+1
𝑚∈ ˆN𝑖

[w⊤𝑚E\\\ (x𝑖) −w⊤𝑙 E\\\ (x𝑖) + 𝛾]+, (2)

where
ˆN𝑖 is the set of hard negatives for data point 𝑖 with

��� ˆN𝑖
��� ≈

O (log𝐿). Note that this restricted form of training reduces the num-

ber of terms in the summation to O
(
𝑁 log

2 𝐿

)
making it scalable

since usually |{𝑙 : 𝑦𝑖𝑙 = +1}| ≈ O (log𝐿), i.e., data points usually
have around O (log𝐿) relevant labels [5].

Modular Training: The second step taken to make learning

scalable is to split training into multiple modules [9, 15, 19, 36, 61].

Although the exact splitting strategy varies frommethod to method,

a typical strategy [13] is to first assume that the label classifier can

be approximated by the label embedding itself, i.e.,

w𝑙 ≈ E\\\ (z𝑙)

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kunal Dahiya et al.

and train the encoder all by itself as:

min

\\\
L(\\\) =

𝑁∑︁
𝑖=1

∑︁
𝑙 :𝑦𝑖𝑙=+1
𝑚∈ ˆN𝑖

[E\\\ (z𝑚)⊤E\\\ (x𝑖) − E\\\ (z𝑙)⊤E\\\ (x𝑖) + 𝛾]+,

(3)

where
ˆN𝑖 is the set of hard negatives for data point 𝑖 . Note that the

above expression has no classifiers W. Once the encoder has been

learnt this way, it is frozen and the label classifiers are learnt by

introducing a correction term and modelling the classifiers as

w𝑙 = E\\\ (z𝑙) +[[[𝑙
The correction terms can then be learnt as

min

{[[[𝑙 }
L({[[[𝑙 }) =

𝑁∑︁
𝑖=1

∑︁
𝑙 :𝑦𝑖𝑙=+1
𝑚∈ ˆN𝑖

[(E\\\ (z𝑚) +[[[𝑚)⊤E\\\ (x𝑖)

− (E\\\ (z𝑙) +[[[𝑙)⊤E\\\ (x𝑖) + 𝛾]+, (4)

In practice, instead of having explicit correction terms, the label

classifiers are instead initialized to the label embeddings i.e.

w𝑙
init← E\\\ (z𝑙)

and then w𝑙 , 𝑙 ∈ [𝐿] are directly fine tuned using (4).

4 DEXA: DEEP ENCODERS WITH AUXILIARY
PARAMETERS

We notice that the assumption w𝑙 ≈ E\\\ (z𝑙) inherent to the above

approach may not hold uniformly well for all labels, and be difficult

to justify in applications where textual descriptions are scant such

as short-text applications. In such cases, the first step of modular

training (3) may learn a distorted encoder as the model parameters

\\\ twist themselves in an effort to ensure that E\\\ (z𝑙) → w𝑙 . This dis-
torted encoder may continue to offer suboptimal performance even

when corrections are introduced in (4). It is possible to somewhat

remedy the situation by amending (4) to jointly fine-tune \\\ along

with learning {[[[𝑙 }. However, joint fine-tuning is usually done for

few epochs otherwise the benefits of modular training are entirely

lost. This may not be able to fully undo the encoder distortions

introduced during (3) training.

Intuition Behind DEXA: In situations with large semantic

gap, the simplest solution is to offer labels correction terms during

encoder training itself. However, to avoid the steep computational

cost of introducing 𝐿 correction terms in (3), DEXA postulates that

“related” labels may have similar correction terms. Specifically, if

label 𝑙 and𝑚 are “related”, then

w𝑙 − E\\\ (z𝑙) ≈ w𝑚 − E\\\ (z𝑚)
Lemma 1 below shows that when this condition is met, DEXA offers

provably better encoder training than pure Siamese-style training

methods. Note that the above postulate is distinct from the postulate

w𝑙 ≈ E\\\ (z𝑙) made (implicitly) by existing methods. DEXA exploits

this intuition by introducing 𝐾 ≪ 𝐿 auxiliary variables in encoder

training. DEXA’s training procedure is described below.

Model Architecture: DEXA uses a DistilBERT base [50] en-

coder as E\\\ to embed data points and labels. Additionally, during

training, DEXA also uses 𝐾 auxiliary vectors A def

= {a𝑘 }𝑘∈[𝐾]

where a𝑘 ∈ R𝐷 to train the encoder. We note that we do not need

to explicitly store auxiliary vectors once training is completed and

that they do not add to DEXA’s overall model size. DEXA also uses

a 1-vs-all-style classifier architecture as W def

= {w𝑙 }𝑙∈[𝐿] where w𝑙
is the classifier for label 𝑙 .

Encoder Training – Module I: First, DEXA creates 𝐾 ≪ 𝐿

disjoint label clusters, say C1, C2, . . . , C𝑙 , i.e., C𝑖 ∩ C𝑗 = ∅ and⋃
𝑘∈𝐾 C𝑘 = [𝐿]. Let 𝐶 : [𝐿] → [𝐾] denote the cluster assign-

ment operator, i.e., for any 𝑙 ∈ [𝐿], 𝐶 (𝑙) ∈ [𝐾] denotes its cluster.
To create its clusters, DEXA uses a pre-trained model, say with pa-

rameters \\\0
using which pre-trained label embeddings are obtained

E\\\ 0 (z𝑙), 𝑙 ∈ [𝐿]. These embeddings are then subject to hierarchical

balanced k-means clustering [13] to create𝐾 balanced label clusters.

Next, an auxiliary vector a𝑘 ∈ R𝐷 is assigned to cluster C𝑘 . Note
that this requires additionally storing 𝐾 auxiliary vectors. Then the

label classifier for label 𝑙 ∈ [𝐿] is approximated as

w𝑙 = 𝔑(E\\\ (z𝑙) + a𝐶 (𝑙)),

where 𝔑 : R𝐷 → 𝑆𝐷−1
is the normalization operator defined as

𝔑(v) def

= v/∥v∥
2
. For a data point 𝑖 ∈ [𝑁], let N𝑖 ⊂ [𝐿] denote the

hard negative labels offered by some hard negative mining strategy.

Note that 𝑦𝑖𝑙 = −1 for all 𝑙 ∈ N𝑖 . DEXA uses the in-batch-style

negative mining strategy proposed in [14] as it had less memory

overheads compared to other methods yet offered fast convergence.

Encoder training is then done using the following loss function:

min

{[[[𝑙 }
L({[[[𝑙 }) =

𝑁∑︁
𝑖=1

∑︁
𝑙 :𝑦𝑖𝑙=+1
𝑚∈ ˆN𝑖

[𝔑(E\\\ (z𝑚) + a𝐶 (𝑘))⊤E\\\ (x𝑖)

−𝔑(E\\\ (z𝑙) + a𝐶 (𝑙))⊤E\\\ (x𝑖) + 𝛾]+, (5)

Note that the above formulation affords (shared) correction terms

to all labels. Also, only the hard negative labels and relevant labels

of a data point participate in training. To further accelerate training,

while creating a mini-batch, a single positive label was randomly

sampled for each data point in the mini-batch. Note that this choice

continues to offer an unbiased estimate of the above loss function.

Experiments were also conducted with dynamic cluster assign-

ment where the clusters were regularly refreshed during Module I

training using the recent-most label embeddings computed using

the encoder E\\\ that was getting trained in parallel. This dynamic

clustering variant led to only marginal gains in performance.

Classifier Training – Module II: Once encoder training is

complete, the encoder is frozen and augmented embedding of each

label is computed as

ẑ𝑙
def

= 𝔑(E\\\ (z𝑙) + a𝐶 (𝑙))

The augmented label embeddings are preserved but the auxiliary

vectors a𝑘 , 𝑘 ∈ [𝐾] are now discarded. Next, the label classifiers

are initialized to the augmented label embeddings, i.e.,

w𝑙
init← ẑ𝑙

Deep Encoders with Auxiliary Parameters for Extreme Classification KDD ’23, August 6–10, 2023, Long Beach, CA, USA

0.0 0.2 0.4 0.6 0.8 1.0
#Auxiliary vectors (K) (millions)

72

74

76

78

80

82

84

86

Re
ca

ll@
20

0

MiniLM-L3-v2
DistilBERT-base

Figure 2: Performance of DEXAwith number of auxiliary vec-
tors on the proprietary SponsoredSearch-40M dataset. DEXA
yielded 7-15% gains over NGAME embeddings. Please note
that 𝐾 = 0 in the figure corresponds to NGAME. The 3-layer
MiniLM-L3-v2 model could perform on par with a 6 layer
DistilBERT model when both are augmented with 𝐾 ≈ 𝐿/40

auxiliary vectors
.

and the classifiers are learnt using

min

{w𝑙 }
L({w𝑙 }) =

𝑁∑︁
𝑖=1

∑︁
𝑙 :𝑦𝑖𝑙=+1
𝑚∈ ˆN𝑖

[w⊤𝑚E\\\ (x𝑖) −w⊤𝑙 E\\\ (x𝑖) + 𝛾]+, (6)

It is possible to modify the above optimization problem to jointly

fine-tune the encoder parameters \\\ as well but the default version

of DEXA does not do this in favor of scalability.

Inference Pipeline: The training process proceeds in two mod-

ules and is described below in detail. In summary, module trains

the encoder E\\\ using the auxiliary vectors after which the classi-

fiersW are trained. Afterward, a maximum inner product search

(MIPS) [32] data structure is created over the set of label classi-

fiers i.e., {w𝑙 }𝑙∈[𝐿] . For a test data point x𝑡 , its encoder embedding

E\\\ (x𝑡) is sent as a query into the MIPS data structure which re-

turns a specified number of labels 𝑙 ∈ [𝐿] whose classifier score
w⊤
𝑙
E\\\ (x𝑡) is the highest. The size of this shortlist is typically set

to 100 ≈ O (log𝐿). Similar to existing methods [13–15, 22], DEXA

combines classifier scores with label similarity scores that are com-

puted separately. Labels are sorted according to this combined

score and predictions are made (see supplementary material for

details). Moreover, DEXA has no overheads with respect to model

size and inference time complexity (see supplementary material

for details). In particular, DEXA offers test time predictions in time

O (𝐵 + 𝐷 log𝐿) where 𝐵 = |\\\ | is size of the encoder model and 𝐷 is

the embedding dimensionality of the encoder. Table 8 shows that

the training time complexity overheads of DEXA are minimal.

Head Label Partitioning: Labels in XC applications are often

designated as being either head, torso, or tail depending on how

frequently do they occur in the training set, i.e., to how many

training data points is a label relevant. Head labels are relevant to a

large number of data points whereas tail labels are often relevant to

less than 10 training points [5]. This implies that head labels stand

to gain the most from correction terms since they have enough

training data to utilize the additional capacity. For this reason, a

variant of DEXA was developed that takes �̂� of the most popular

head labels, and assigned them a cluster of their own. The rest

of the 𝐿 − �̂� labels are then partitioned into 𝐾 − �̂� clusters. This

strategy was found to offer mild improvements in performance.

DEXA decides �̂� by counting the number of labels that are relevant

to at least 50 training points.

5 THEORETICAL ANALYSIS
We theoretically establish here DEXA’s ability to reduce the effect

of semantic gap on encoder training, on a realizable model. We note

that using simple extensions of existing results on generalizability

of encoder-based XC architectures [13], it can be shown that the

model learnt by DEXA after encoder training (Module I) enjoys

generalization bounds that entirely independent of the number of

labels 𝐿 in the application. Instead, they are dependent only on the

size of the encoder and 𝐾 , the number of auxiliary vectors used in

Module I training.

5.1 Realizable Model
Consider a setting where the 𝑁 data points and the 𝐿 labels are

described using 𝑃-dimensional vectors i.e., x𝑖 , z𝑙 ∈ R𝑃 . We consider

a linear encoder parameterized by a matrix E ∈ R𝐷×𝑃 as E(x) =
Ex ∈ R𝐷 . Note that we do not enforce the embeddings to be unit

norm to simplify the calculations. Also, assume a regression setting

where 𝑦𝑖𝑙 ∈ R. Furthermore, we consider the realizable setting

where there are some (unknown) encoder and classifier parameters

which have generated the data i.e., for some E∗ ∈ R𝐷×𝑃 and w∗
𝑙
∈

R𝐷 , 𝑙 ∈ [𝐿], we have

𝑦𝑖𝑙
def

= (w∗
𝑙
)⊤E∗x𝑖

The semantic gap in this setting can be quantified as follows:

ΔΔΔ𝑙
def

= w∗
𝑙
− E∗z𝑙

Let us now try to perform encoder learning using classical Siamese

strategy and DEXA using the squared loss.

Siamese Training: Adapted to this setting, (3) would use the

following loss function

L(E) = 1

𝑁𝐿

∑︁
𝑖,𝑙

(z⊤
𝑙
E⊤Ex𝑖 − 𝑦𝑖𝑙)2 (7)

DEXA Training: Adapted to this setting, Module I of DEXA

would cluster the labels into 𝐾 clusters and use the following loss

function along with auxiliary variables A def

= {a𝑘 }𝑘∈[𝐾]

L(E,A) = 1

𝑁𝐿

∑︁
𝑖,𝑙

((Ez𝑙 + a𝐶 (𝑙))⊤Ex𝑖 − 𝑦𝑖𝑙)2 (8)

where 𝐶 (𝑙) gives us the cluster of label 𝑙 .
Comparison: The minimizers of both the above optimization

problems are not available in closed form despite the simplified

setting as these continue to be non-convex problems. To get around

this issue, we look at the norm of the gradient of the two objective

http://manikvarma.org/pubs/dahiya23b-supp.pdf
http://manikvarma.org/pubs/dahiya23b-supp.pdf

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kunal Dahiya et al.

functions at the optimal encoder i.e. we compare ∥∇𝐸L(E∗)∥2 with
∥∇𝐸L(E∗,A)∥2. A larger encoder gradient at E∗ suggests that the
optimal encoder for that objective function lies farther from E∗

which will allow us to quantify the suitability of the two objective

functions. Let us define some handy notation. For any label cluster

𝑘 ∈ [𝐾], let ΔΔΔ𝑘 denote the average semantic gap in cluster C𝑘 , i.e.,

ΔΔΔ𝑘
def

=
1

|C𝑘 |
∑︁
𝑙∈C𝑘

ΔΔΔ𝑙

Also let 𝜎2

𝑘
denote the intra-cluster variance in semantic gap i.e.,

𝜎2

𝑘

def

=
∑︁
𝑙∈C𝑘
∥ΔΔΔ𝑙 −ΔΔΔ𝑘 ∥22

Then we have the following result with us

Lemma 1. Assuming ∥x𝑖 ∥2 , ∥z𝑙 ∥2 , ∥w∗𝑙 ∥2 ≤ 1 to avoid notational
clutter, we have ∇𝐸L(E∗)

2
≤ 2∥E∗∥2

2

√√
1

𝐿

∑︁
𝑙∈[𝐿]

∥ΔΔΔ𝑙 ∥22

∇𝐸L(E∗,D∗)
2
≤ 4∥E∗∥2

2

√√
1

𝐿

∑︁
𝑘∈[𝐾]

𝜎2

𝑘
,

whereD∗ = [−ΔΔΔ𝑙 , . . . ,−ΔΔΔ𝐾] ∈ R𝐷×𝐾 and ∥E∗∥2 is the spectral norm
of the matrix E∗.

The above result shows that the DEXA approach offers a far

smaller encoder gradient, indicating a more faithful recovery of the

true encoder parameters, if

𝜎2

𝑘
≪

∑︁
𝑙∈C𝑘
∥ΔΔΔ𝑙 ∥22

i.e., if ∑︁
𝑙∈C𝑘
∥ΔΔΔ𝑙 −ΔΔΔ𝑘 ∥22 ≪

∑︁
𝑙∈C𝑘
∥ΔΔΔ𝑙 ∥22

Thus, even if the individual label-wise semantic gaps ΔΔΔ𝑙 are large
in a cluster, DEXA offers faithful encoder recovery so long that

those (large) semantic gaps are similar to each other. Recall that

this is exactly the postulate made in Section 4 which posits good

performance for DEXA if for labels 𝑙,𝑚 in the same cluster, we have

w𝑙 − E\\\ (z𝑙) ≈ w𝑚 − E\\\ (z𝑚)
Due to lack of space, the proof of this result is presented in the

supplementary material.

Generalization Bound: DEXA’s frugal strategy allows it to

offer crisp generalization bounds. We present an informal statement

here with a detailed discussion in the supplementary material.

Lemma 2 (Excess Risk Bound – Informal). Suppose DEXA is
used with an encoder with parameters \\\ and offering 𝐷-dimensional
embeddings. For a confidence parameter 𝛿 ∈ (0, 1], suppose the en-
coder offers the following excess risk bound with probability 1 − 𝛿 ,

ℓ (\\\) ≤ ℓ̂𝑁 (\\\) + 𝜖 (𝑁) +

√︄
ln

1

𝛿

𝑁

where 𝜖 (𝑁) captures the dependence of the excess risk on the encoder
parameter characteristics and ℓ, ℓ̂𝑁 respectively denote the population
risk and empirical risk on 𝑁 i.i.d. training points. Then DEXA with 𝐾

Table 1: Dataset Statistics for benchmark datasets (publicly
available on The Extreme Classification Repository [5]) and
the ORCAS dataset [12]

.

Dataset # Train
Pts 𝑁

Labels
𝐿

Test
Pts 𝑁 ′

Avg. # data pts
per label

Avg. # labels
per data pt

Short-text benchmark datasets

LF-AmazonTitles-131K 294,805 131,073 134,835 2.29 5.15

LF-AmazonTitles-1.3M 2,248,619 1,305,265 970,237 22.20 38.24

ORCAS-800K 7,371,396 799,953 2,551,398 16.12 1.75

Full-text benchmark datasets

LF-Amazon-131K 294,805 131,073 134,835 2.29 5.15

LF-WikiSeeAlso-320K 693,082 312,330 177,515 2.11 4.68

LF-Wikipedia-500K 1,813,391 501,070 783,743 4.77 24.75

Table 2: Results on short-text benchmark datasets with em-
beddings trained using different algorithms. See the supple-
mentarymaterial for full results, definitions of P@k, PSP@k.

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-1.3M

DEXA 51.92 44.01 38.86 32.96 35.86 37.31
NGAME 45.82 39.94 35.48 33.03 35.63 36.8

SiameseXML 43.80 38.60 34.94 21.64 25.89 28.48

ECLARE 38.80 34.54 31.51 22.25 26.13 28.32

DECAF 41.07 36.56 33.30 17.43 20.85 23.01

ANCE 46.44 41.48 37.59 31.91 35.31 37.25

DPR 44.64 39.05 34.83 32.62 35.37 36.72

LF-AmazonTitles-131K

DEXA 44.76 29.72 21.18 39.29 44.58 49.50
NGAME 42.61 28.86 20.69 38.27 43.75 48.71

SiameseXML 38.13 26.11 19.17 35.09 39.97 45.14

ECLARE 33.42 24.44 18.35 30.4 36.68 42.33

DECAF 33.51 23.08 17.05 27.93 33.13 38.33

ANCE 42.67 29.05 20.98 38.16 43.78 49.03

DPR 41.85 28.71 20.88 38.17 43.93 49.45

BM25 18.10 11.69 8.51 17.94 18.53 20.73

ColBERT 12.87 9.99 7.18 14.19 14.57 16.16

GraphFormers 20.84 13.57 10.06 20.82 21.85 24.93

RocketQA 42.75 29.22 20.98 39.97 44.50 49.21

auxiliary vectors collected in the matrix A ∈ R𝐷×𝐾 offers an excess
risk bound of the form

ℓ (\\\,A) ≤ ℓ̂𝑁 (\\\,A) + 𝜖 (𝑁) +

√︄
ln

1

𝛿

𝑁
+ Δ ln𝑁
√
𝑁

,

where Δ def

= O
(
ln(𝐷𝐾)

√
𝑅1𝑅∞

)
and 𝑅1

def

= ∥A∥
1,1 , 𝑅∞

def

= ∥A∥
1,∞.

6 EXPERIMENTS
Datasets: This paper considers several benchmark datasets publicly

available at the Extreme Classification Repository [5]. The label-

metadata is available in the form of label-text for these datasets. In

particular, LF-AmazonTitles-131K, LF-AmazonTitles-1.3M involve

predicting other relevant products based on product title, whereas

both product title and description are available for LF-Amazon-

131K dataset. Additionally, LF-Wikipedia-500K and LF-WikiSeeAlso-

320K involve predicting relevant Wikipedia categories and similar

http://manikvarma.org/pubs/dahiya23b-supp.pdf
http://manikvarma.org/pubs/dahiya23b-supp.pdf
http://manikvarma.org/pubs/dahiya23b-supp.pdf
http://manikvarma.org/pubs/dahiya23b-supp.pdf

Deep Encoders with Auxiliary Parameters for Extreme Classification KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 3: Results on full-text benchmark datasets with embed-
dings trained using different algorithms. See the supplemen-
tary material for full results, definitions of P@k, PSP@k.

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-Wikipedia-500K

DEXA 79.99 57.08 42.52 50.15 56.24 57.68
NGAME 77.92 54.87 40.95 50.99 56.02 57.33

SiameseXML 50.33 32.81 24.86 33.17 31.61 32.51

ECLARE 63.41 43.20 33.44 29.64 33.32 36.23

DECAF 71.64 52.24 40.92 33.02 40.27 44.35

ANCE 63.33 43.35 33.12 34.95 37.51 39.71

DPR 65.23 45.85 35.23 45.79 47.83 49.90

LF-WikiSeeAlso-320K

DEXA 46.57 29.92 22.26 32.38 35.34 38.27
NGAME 43.58 28.01 20.86 30.59 33.29 36.03

SiamseXML 40.70 27.16 20.74 29.05 32.39 35.67

ECLARE 35.21 24.36 18.89 24.48 28.89 31.62

DECAF 37.66 24.67 18.59 24.83 27.64 30.32

ANCE 44.35 29.15 21.99 30.32 33.80 37.15

DPR 41.66 27.16 20.66 30.32 32.97 36.25

LF-Amazon-131K

DEXA 46.64 30.93 22.06 38.83 44.98 50.38
NGAME 45.35 29.89 21.35 38.53 44.08 49.32

SiameseXML 41.97 28.59 21.03 37.28 42.95 48.90

ECLARE 34.80 25.60 19.41 30.53 37.78 44.29

DECAF 39.04 26.14 19.03 31.92 37.31 42.67

ANCE 44.87 30.31 21.89 37.94 44.36 50.12

DPR 43.30 29.74 21.90 38.30 44.98 51.52

Table 4: Results on the ORCAS-800K dataset. +AP indicates
whether the Auxiliary Parameters were used alongside the
backbone architecture.

Architecture P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 R@10

DistilBERT-Base 72.47 38.87 26.60 58.70 70.26 76.68 87.84

DistilBERT-Base + AP 74.98 40.46 27.58 60.27 72.71 79.13 89.77

Wikipedia articles, respectively. Please note that the paper considers

short-text (LF-AmazonTitles-131K and LF-AmazonTitles-1.3M) as

well as full-text (LF-Amazon-131K, LF-WikiSeeAlso-320K, and LF-

Wikipedia-500K) benchmark datasets. Results are also reported on

the ORCAS-800K dataset where the task is to predict URLs given

a query. The dataset was created from click logs for a document

retrieval task [11] (see supplementary material for details on dataset

creation). Please refer to Table 1 for data statistics. Finally, results

have also been reported on SponsoredSearch-40M dataset created

by mining search engine logs from a popular search engine. This is

an application specific dataset that tries to match user queries on a

search engine to advertiser bid keywords.

Baselines: Improving the quality of label embeddings is the key

contribution of the DEXA algorithm. The embeddings learned using

DEXA are compared against the embeddings learned using encoder-

only models. These include XC methods such as NGAME [14],

SiameseXML [13], DECAF [36] and ECLARE [38]. Results are also

Table 5: Ablation experiments with different architectures.
+AP indicates whether the Auxiliary Parameters were used
alongside the backbone architecture or not.

Architecture +AP P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K

Bag-of-embedding ✗ 29.45 20.35 15.11 26.69 30.76 35.41

✓ 36.72 24.03 17.19 30.29 34.30 38.47

Bi-GRU ✗ 36.90 24.68 17.62 32.30 36.49 40.59

✓ 37.42 24.44 17.36 30.93 34.82 38.73

MiniLM-L3 ✗ 35.80 24.24 17.68 32.05 36.40 41.22

✓ 39.08 25.55 18.34 32.81 37.03 41.59

MiniLM-L6 ✗ 39.12 26.40 19.07 35.00 39.70 44.53

✓ 41.68 27.70 19.91 36.58 41.33 46.29

DistilBERT-Base ✗ 43.17 28.99 20.73 38.74 43.94 48.81

✓ 44.48 29.50 21.08 39.26 44.43 49.36

BERT-Base ✗ 43.49 29.01 20.75 39.07 44.03 48.92

✓ 45.44 29.76 20.99 39.03 43.99 48.43

LF-AmazonTitles-1.3M

Bag-of-embedding ✗ 32.18 26.94 23.51 25.46 26.19 26.47

✓ 42.90 36.06 31.77 26.11 28.28 29.47

Bi-GRU ✗ 36.01 30.18 26.20 26.66 27.53 27.81

✓ 43.38 36.23 31.81 27.50 29.21 30.08

MiniLM-L3 ✗ 35.85 30.01 26.11 27.92 28.79 29.08

✓ 39.64 31.94 27.42 27.59 28.63 29.01

MiniLM-L6 ✗ 38.72 32.80 28.70 29.71 30.97 31.42

✓ 43.95 36.28 31.59 30.42 31.90 32.55

DistilBERT-Base ✗ 45.83 39.94 35.48 33.03 35.63 36.80

✓ 50.28 42.32 37.19 33.21 35.78 37.00

BERT-Base ✗ 49.53 43.38 38.51 35.52 38.60 39.86

✓ 54.00 46.03 40.64 35.33 38.47 39.97

Table 6: Ablation experiments with different number of clus-
ters on the LF-AmazonTitles-131K dataset. HLP refers to
head label partitioning indicating whether the head labels
were assigned separate auxiliary parameters or not.

#clusters HLP P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K

4,096 ✗ 43.48 28.97 20.70 38.72 43.88 48.71

8,192 ✗ 43.50 29.01 20.74 38.82 43.92 48.79

16,384 ✗ 43.78 29.07 20.77 38.84 43.99 48.80

32,768 ✗ 43.84 29.06 20.80 38.92 43.97 48.89

65,536 ✗ 44.48 29.50 21.08 39.26 44.43 49.36

32,768 ✓ 44.30 29.36 20.93 39.05 44.19 49.01

65,536 ✓ 44.76 29.72 21.18 39.29 44.58 49.50

LF-AmazonTitles-1.3M

4,096 ✗ 48.33 40.60 35.65 33.20 35.49 36.52

8,192 ✗ 48.66 40.82 35.82 33.18 35.48 36.51

16,384 ✗ 49.33 41.64 36.68 33.33 35.76 36.94

32,768 ✗ 49.54 41.72 36.67 33.30 35.74 36.89

65,536 ✗ 50.28 42.32 37.19 33.21 35.78 37.00

131,072 ✗ 51.47 43.23 37.97 32.74 35.46 36.76

65,536 ✓ 51.92 44.01 38.86 32.96 35.86 37.31

131,072 ✓ 52.51 44.49 39.27 32.82 35.86 37.38

reported for leading sparse and dense retrieval (DR) methods includ-

ing BM25, DPR [26], ColBERT [29], GraphFormers [58], ANCE [56],

and RocketQA [45]. Unfortunately, some methods could only scale

to small datasets. Although not the focus of the paper, one could

learn extreme classifiers on top of DEXA’s embeddings either using

http://manikvarma.org/pubs/dahiya23b-supp.pdf
http://manikvarma.org/pubs/dahiya23b-supp.pdf
http://manikvarma.org/pubs/dahiya23b-supp.pdf

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kunal Dahiya et al.

Table 7: Ablation experiments with different clustering al-
gorithms on the LF-AmazonTitles-131K dataset. Clustering
could be performed over the label embedding (𝑍) or label
centroids (𝑋). DEXA deploys label partitioning (LP) to assign
separate auxiliary parameters for head labels.

Method space P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

𝑘-means 𝑍 43.28 28.98 20.77 38.41 43.82 48.79

Balanced 𝑘-means 𝑋 43.16 28.68 20.59 33.87 43.26 48.15

Balanced 𝑘-means 𝑍 44.48 29.50 21.08 39.26 44.43 49.36

Balanced 𝑘-means + LP 𝑍 44.76 29.72 21.18 39.29 44.58 49.50

Table 8: DEXA’s implementation incurs minimal to no
overheads in training time and model size as compared to
NGAME’s implementation when learning the encoder.

Metric NGAME DEXA NGAME DEXA

LF-Wikipedia-500K LF-AmazonTitles-1.3M

Training time (hrs) 41.93 42.75 75.53 76.62

Model Size (GB) 1.82 1.82 4.71 4.71

0 20 40 60 80 100 120
#Auxiliary vectors (K) (thousands)

46

47

48

49

50

51

Pr
ec

isi
on

@
1

Figure 3: Performance of DEXA with number of Auxiliary
Vectors on the LF-AmazonTitles-1.3M dataset. DEXA yielded
2.5-5.5% gains over NGAME embeddings which is equivalent
to configuration 𝐾 = 0 for DEXA. Please refer to Table 6 for
more detailed results.

NGAME [14] or using a number of classical XC methods available

to learn extreme classifiers over fixed features such as Slice [21] and

Bonsai [27]. In particular, this paper reports results for the setting

when the DEXA classifiers are learned using NGAME negative sam-

pling. This setting is compared against leading deep XC techniques

such as XR-Transformer [61], BERTXML [7], LightXML [24], Atten-

tionXML [60] and MACH [33] that are endowed with extreme clas-

sifiers as well. Finally, the supplementary material includes results

for classical XC methods including Parabel [41], DiSMEC [2] and

Bonsai [27] for completeness. For SponsoredSearch-40M dataset,

DEXA is primarily compared against NGAME which is one of the

leading dense retrieval algorithms.

Evaluation Metrics: Results are reported on popular XC met-

rics such as precision@𝑘 (P@𝑘 , 𝑘 ∈ 1, 3, 5) and their propensity-

scored [22, 44, 51] variants precision@𝑘 (PSP@𝑘 , 𝑘 ∈ 1, 3, 5). More-

over, results are also reported on vanilla and propensity-scored

version of nDCG@𝑘 , i.e., N@𝑘 (𝑘 ∈ 1, 3, 5) and PSN@𝑘 (𝑘 ∈ 1, 3, 5)

respectively. Note that the propensity-scored variants put more em-

phasis on data-scarce tail labels. Please refer to The Extreme Classi-

fication Repository [5] for definitions of all these metrics. Different

metrics might be important for different real-world applications.

For e.g., recall@𝑘 with large 𝑘 reported for SponsoredSearch-40M

dataset, is the primary metric for the application to match user

queries to advertiser keywords. This is because the retrieval algo-

rithm generally retrieves a large number of keywords which are

progressively pruned in downstream relevance, click-prediction,

and bidding stages.

Hyper-parameters: The most prominent of DEXA’s hyper-

parameters are the number of auxiliary vectors and the clustering

algorithm. DEXA was found to be quite robust to these hyper-

parameters as demonstrated in Table 6 and Table 7. DEXA was

trained using NGAME negative sampling which has been demon-

strated to yield state-of-the-art results in the XC setting. The Adam

optimizer was used to learn the model parameters and its hyper-

parameters including the number of epochs and learning rate.

Please refer to Table 11 in the supplementary material for DEXA’s

hyper-parameters. The hyper-parameters of baseline methods were

set as per the source paper wherever available and by fine-grained

validation otherwise.

Evaluation on benchmark datasets: DEXA’s embeddings re-

sulted in more accurate predictions as compared to the embeddings

learned using leading DR as well as XC methods as demonstrated

in Table 2 and Table 3 for short-text and full-text datasets, respec-

tively. In particular, DEXA’s embeddings led to 2-32%more accurate

predictions over leading DR methods including ANCE, DPR, Col-

BERT, GraphFormers, and RocketQA. Note that DR methods are

specifically designed to learn an encoder-onlymodel. Unfortunately,

expensive methods such as ColBERT, GraphFormers and RocketQA

could only scale to LF-AmazonTitles-131K dataset. Moreover, the

embeddings learned using DEXA were also found to be 1.2–30%

more accurate than the embeddings learned using leading XC meth-

ods including NGAME, SiameseXML, and DECAF. In particular,

DEXA’s embeddings could be up to 6% more accurate than the

NGAME’s embeddings on LF-AmazonTitles-1.3M dataset (see Fig. 3

for more details). Similar results were observed on the ORCAS-

800K dataset (see Table 4) where adding auxiliary parameters led

to a 2% gain over an encoder only model. Note that the same back-

bone architecture, i.e., 6-layer DistilBERT-Base was used for both

methods. Similar results were observed for other architectures in-

cluding Bag-of-embeddings [15], Bi-GRU [60], 3-layer MiniLM [53],

6-layer MiniLM and BERT-Base [16] encoders demonstrating the

generality of auxiliary parameters introduced by DEXA. Finally, the

extreme classifiers trained over DEXA’s embeddings could be up

to 21% more accurate than leading deep XC methods including XR-

Transformer, LightXML, AttentionXML, MACH and SiameseXML.

Please see Table 13 and Table 14 in the supplementary material that

includes results for methods endowed with extreme classifiers.

Evaluation on proprietary dataset: Fig. 2 shows the com-

parison of DEXA against NGAME which is one of the leading

http://manikvarma.org/pubs/dahiya23b-supp.pdf
http://manikvarma.org/pubs/dahiya23b-supp.pdf
http://manikvarma.org/pubs/dahiya23b-supp.pdf

Deep Encoders with Auxiliary Parameters for Extreme Classification KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 9: Light grey color is used to indicate wrong predictions.
Example is taken from LF-AmazonTitles-1.3M dataset

Method Top 5 Predictions

Document Fundamentals of Nuclear Pharmacy

DEXA Nuclear Medicine Technology: Procedures and Quick Reference

Nuclear Medicine and PET/CT: Technology and Techniques, 7e

Radiation Safety in Nuclear Medicine, Second Edition

Practical Mathematics in Nuclear Medicine Technology

Nuclear Medicine Instrumentation

NGAME Basic Skills in Interpreting Laboratory Data, 4th Edition

Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems

Frequently Prescribed Medications: Drugs You Need to Know

Pharmacy Practice And The Law

Pharmaceutical Compounding and Dispensing

Table 10: Light grey color is used to indicate wrong predic-
tions. Example is taken from LF-WikiSeeAlso-320K dataset

Method Top 5 Predictions

Document Constitutional reforms of Julius Caesar: The constitutional reforms

of Julius Caesar were a series of laws pertaining to the Constitution of

the Roman Republic enacted between 49 and 44 BC, during Caesar’s

dictatorship. Caesar died in 44 BC before the implications of his cons-

-titutional actions could be realized. During his early career, Caesar had

seen how chaotic and dysfunctional the Roman Republic had become.

The republican machinery had broken down under the weight of imp-

-erialism, the central government had become powerless, the pro-

-vinces had been transformed into independent principalities under

the absolute control of their governors, and the army had replaced the

constitution as the means of accomplish

DEXA Acta Senatus

Centuria

Roman Law

Interrex

Byzantine Senate

NGAME Julius Caesar

Assassination of Julius Caesar

Caesarism

Constitution of the Roman Republic

Caesar’s civil war

dense-retrieval algorithms in production for the Sponsored Search

application. Please note that 𝐾 = 0 in the figure corresponds to

NGAME. DEXA with a smaller MiniLM-L3-v2 encoder with 17M

parameters and augmented with just 200K auxiliary vectors was

found to be 10% more accurate than NGAME with a DistilBERT

encoder with 66M parameters. This indicates the effectiveness of

the auxiliary vectors which when combined with a smaller encoder

can lead to better results than state-of-the-art dense retrieval meth-

ods with a larger encoder. This ability of DEXA to enable a small

encoder to perform better is significant for real-world applications

which need to make billions of predictions per day under strict

latency limits and can lead to significant COGS savings for such

applications. The figure further shows how for a larger DistilBERT

encoder, performance saturates faster than a smaller MiniLM-L3-v2

encoder as we increase the number of auxiliary vectors.

Ablations: Ablation experiments were conducted to analyze

the impact of the clustering algorithm and the number of clus-

ters. DEXA was found to be quite robust to the clustering algo-

rithms as it yielded comparable accuracies with different strategies,

viz., clustering using standard 𝑘-means over label embeddings, bal-

anced 𝑘-means over label embeddings and balanced 𝑘-means over

label centroids. Note that label centroid for label 𝑙 is computed

as

∑
{𝑖 |𝑦𝑖𝑙 =+1} E\ (x𝑖)∑
{𝑖 |𝑦𝑖𝑙 =+1} 1

. Please refer to Table 7 for results on the LF-

AmazonTitles-131K dataset. Additionally, Fig. 3 demonstrates that

introducing merely 2
12

(or 4,096) clusters(and corresponding aux-

iliary parameters) led to a 2.5% gain in P@1 over NGAME which

doesn’t make use of auxiliary parameters indicating the impact of

auxiliary parameters while training deep encoders. Additionally,

increasing the number of clusters from 2
12

to 2
16

led to a 1% and

2% increase on LF-AmazonTitles-131K and LF-AmazonTitles-1.3M

datasets, respectively. Moreover, introducing head label partition-

ing (HLP) yielded a further 1% gain over the vanilla variant. Please

see Table 6 for detailed results. Increasing the number of clusters

𝐾 can lead to gains in accuracy however that comes at the cost

of memory overhead. In particular, introducing 𝐾 clusters incurs

O (𝐾𝐷) memory overhead where 𝐷 is the embedding dimension.

See supplementary material for detailed analysis.

Qualitative Analysis: Table 9 shows the top 5 predictions of

DEXA and NGAME for the test document "Fundamentals of Nuclear

Pharmacy" in the LF-AmazonTitles-1.3M dataset. DEXAwas able to

predict all of the top 5 slots correctly while NGAMEmade irrelevant

predictions. Analysis revealed that the labels predicted by DEXA

were all tail labels with 1–5 training points with the average number

of training documents for a label being 22. This indicates that the

augmentation of text-based representations with auxiliary vectors

can particularly help predict data-scarse tail labels more accurately.

Similarly, DEXA could predict relevant labels such as ‘Acta Senatus’,

and ‘Centuria’ whereas most of NGAME’s top predictions focused

on the repeated token ‘Ceasar’ (see Table 10). It is notable that it

can be challenging to make DEXA’s predictions on the basis of

label text alone, demonstrating the utility of auxiliary parameters.

7 CONCLUSIONS AND FUTURE DIRECTIONS
This paper presented an alternate architecture to train encoders for

large-scale XC applications. The augmentations are light-weight,

modular and effective at addressing the semantic gap in XC appli-

cations by allowing label representations to not be constrained by

label-text alone. Several interesting future directions exist such as

better clustering of labels and collaborative learning among label

clusters. Setting the number of auxiliary vectors properly, keeping

statistical, computational and memory requirements in mind, is key

to extracting the benefits of DEXA. As Figure 2 shows, performance

does eventually plateau as the number of auxiliary vectors is in-

creased. DEXA also seems to avoid a commonly-observed trade-off

between performance on head labels (as indicated by P@k) and per-

formance on tail labels (as indicated by PSP@k). Existing modular

XC methods [13, 14] often observe better P@k when using encoder

+ classifier but better PSP@k when using the encoder alone. How-

ever, as Table 15 in the supplementary material indicates, DEXA

seems to avoid this trade-off by offering superior P@k as well as

comparable or better PSP@k. This merits further investigation.

http://manikvarma.org/pubs/dahiya23b-supp.pdf
http://manikvarma.org/pubs/dahiya23b-supp.pdf

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kunal Dahiya et al.

REFERENCES
[1] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. 2013. Multi-label learning

with millions of labels: Recommending advertiser bid phrases for web pages. In

WWW.

[2] R. Babbar and B. Schölkopf. 2017. DiSMEC: Distributed Sparse Machines for

Extreme Multi-label Classification. In WSDM.

[3] R. Babbar and B. Schölkopf. 2019. Data scarcity, robustness and extreme multi-

label classification. ML (2019).

[4] E. J. Barezi, I. D. W., P. Fung, and H. R. Rabiee. 2019. A Submodular Feature-Aware

Framework for Label Subset Selection in Extreme Classification Problems. In

NAACL.
[5] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. 2016.

The Extreme Classification Repository: Multi-label Datasets & Code. http:

//manikvarma.org/downloads/XC/XMLRepository.html

[6] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. 2015. Sparse Local Embeddings

for Extreme Multi-label Classification. In NIPS.
[7] I. Chalkidis, M. Fergadiotis, P. Malakasiotis, N. Aletras, and I. Androutsopou-

los. 2019. Extreme Multi-Label Legal Text Classification: A case study in EU

Legislation. In ACL.
[8] W-C. Chang, F.-X. Yu, Y.-W. Chang, Y. Yang, and S. Kumar. 2020. Pre-training

Tasks for Embedding-based Large-scale Retrieval. In ICLR.
[9] W.-C. Chang, H.-F. Yu, K. Zhong, Y. Yang, and I. S. Dhillon. 2020. Taming

Pretrained Transformers for Extreme Multi-label Text Classification. In KDD.
[10] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. 2020. A simple framework for

contrastive learning of visual representations. In ICML.
[11] N. Craswell, D. Campos, B. Mitra, E. Yilmaz, and B. Billerbeck. 2020.

ORCAS: 18 Million Clicked Query-Document Pairs for Analyzing Search.

arXiv:2006.05324 [cs.IR]

[12] N. Craswell, B. Mitra, E. Yilmaz, D. Campos, and E. M. Voorhees. 2020. Overview

of the TREC 2019 deep learning track. arXiv:2003.07820

[13] K. Dahiya, A. Agarwal, D. Saini, K. Gururaj, J. Jiao, A. Singh, S. Agarwal, P. Kar,

and M. Varma. 2021. SiameseXML: Siamese Networks meet Extreme Classifiers

with 100M Labels. In ICML.
[14] K. Dahiya, N. Gupta, D. Saini, A. Soni, Y. Wang, K. Dave, J. Jiao, K. Gururaj, P. Dey,

A. Singh, D. Hada, V. Jain, B. Paliwal, A. Mittal, S. Mehta, R. Ramjee, S. Agarwal,

P. Kar, and M. Varma. 2023. NGAME: Negative mining-aware mini-batching for

extreme classification. In WSDM.

[15] K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave, A. Soni, H. Jain, S. Agarwal, and

M. Varma. 2021. DeepXML: A Deep Extreme Multi-Label Learning Framework

Applied to Short Text Documents. In WSDM.

[16] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language understanding. NAACL (2019).

[17] F. Faghri, D.-J. Fleet, J.-R. Kiros, and S. Fidler. 2018. VSE++: Improving Visual-

Semantic Embeddings with Hard Negatives. In BMVC.
[18] C. Guo, A. Mousavi, X. Wu, D.-N. Holtmann-Rice, S. Kale, S. Reddi, and S. Kumar.

2019. Breaking the Glass Ceiling for Embedding-Based Classifiers for Large

Output Spaces. In NeurIPS.
[19] N. Gupta, P. H. Chen, H.-F. Yu, Cho-J. Hsieh, and I. S. Dhillon. 2022. ELIAS:

End-to-End Learning to Index and Search in Large Output Spaces. In NeurIPS.
[20] K. He, Haoqi Fan, Yuxin W., S. Xie, and R. Girshick. 2020. Momentum contrast

for unsupervised visual representation learning. In CVPR.
[21] H. Jain, V. Balasubramanian, B. Chunduri, and M. Varma. 2019. Slice: Scalable

Linear Extreme Classifiers trained on 100 Million Labels for Related Searches. In

WSDM.

[22] H. Jain, Y. Prabhu, and M. Varma. 2016. Extreme Multi-label Loss Functions for

Recommendation, Tagging, Ranking and Other Missing Label Applications. In

KDD.
[23] K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E.

Hullermeier. 2016. Extreme F-measure Maximization using Sparse Probability

Estimates. In ICML.
[24] T. Jiang, D. Wang, L. Sun, H. Yang, Z. Zhao, and F. Zhuang. 2021. LightXML:

Transformer with Dynamic Negative Sampling for High-Performance Extreme

Multi-label Text Classification. In AAAI.
[25] B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and Y. Kalantidis. 2020.

Decoupling representation and classifier for long-tailed recognition. In ICLR.
[26] V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-T.

Yih. 2020. Dense Passage Retrieval for Open-Domain Question Answering. In

EMNLP.
[27] S. Khandagale, H. Xiao, and R. Babbar. 2020. Bonsai: diverse and shallow trees

for extreme multi-label classification. ML (2020).

[28] S. Kharbanda, A. Banerjee, E. Schultheis, and R. Babbar. 2022. CascadeXML:

Rethinking Transformers for End-to-end Multi-resolution Training in Extreme

Multi-label Classification. In NeurIPS.
[29] O. Khattab and M. Zaharia. 2020. Colbert: Efficient and effective passage search

via contextualized late interaction over bert. In SIGIR.
[30] Shuqi Lu, Di He, Chenyan Xiong, Guolin Ke, Waleed Malik, Zhicheng Dou, Paul

Bennett, Tieyan Liu, and Arnold Overwijk. 2021. Less is More: Pre-train a Strong

Text Encoder for Dense Retrieval Using a Weak Decoder. arXiv:2102.09206

[cs.LG].

[31] W. Lu, J. Jiao, and R. Zhang. 2020. TwinBERT: Distilling Knowledge to Twin-

Structured Compressed BERT Models for Large-Scale Retrieval. In CIKM.

[32] A. Y. Malkov and D. A. Yashunin. 2020. Efficient and robust approximate nearest

neighbor search using Hierarchical Navigable SmallWorld graphs. TPAMI (2020).
[33] T. K. R. Medini, Q. Huang, Y. Wang, V. Mohan, and A. Shrivastava. 2019. Extreme

Classification in Log Memory using Count-Min Sketch: A Case Study of Amazon

Search with 50M Products. In NeurIPS.
[34] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013. Distributed

Representations of Words and Phrases and Their Compositionality. In NIPS.
[35] P. Mineiro and N. Karampatziakis. 2015. Fast Label Embeddings via Randomized

Linear Algebra. In ECML/PKDD.
[36] A. Mittal, K. Dahiya, S. Agrawal, D. Saini, S. Agarwal, P. Kar, and M. Varma. 2021.

DECAF: Deep Extreme Classification with Label Features. In WSDM.

[37] A. Mittal, K. Dahiya, S. Malani, J. Ramaswamy, S. Kuruvilla, J. Ajmera, K. Chang,

S. Agrawal, P. Kar, and M. Varma. 2022. Multimodal Extreme Classification. In

CVPR.
[38] A. Mittal, N. Sachdeva, S. Agrawal, S. Agarwal, P. Kar, and M. Varma. 2021.

ECLARE: Extreme Classification with Label Graph Correlations. In WWW.

[39] A. Niculescu-Mizil and E. Abbasnejad. 2017. Label Filters for Large Scale Multil-

abel Classification. In AISTATS.
[40] Y. Prabhu, A. Kag, S. Gopinath, K. Dahiya, S. Harsola, R. Agrawal, and M. Varma.

2018. Extreme multi-label learning with label features for warm-start tagging,

ranking and recommendation. In WSDM.

[41] Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. 2018. Parabel: Parti-

tioned label trees for extreme classification with application to dynamic search

advertising. In WWW.

[42] Y. Prabhu, A. Kusupati, N. Gupta, and M. Varma. 2020. Extreme Regression for

Dynamic Search Advertising. In WSDM.

[43] Y. Prabhu and M. Varma. 2014. FastXML: A Fast, Accurate and Stable Tree-

classifier for eXtreme Multi-label Learning. In KDD.
[44] M. Qaraei, E. Schultheis, P. Gupta, and R. Babbar. 2021. Convex Surrogates for

Unbiased Loss Functions in Extreme Classification With Missing Labels. In The
WebConf.

[45] Y. Qu, Y. Ding, J. Liu, K. Liu, R. Ren, W. X. Zhao, D. Dong, H. Wu, and H. Wang.

2021. RocketQA: An Optimized Training Approach to Dense Passage Retrieval

for Open-Domain Question Answering.

[46] A. S. Rawat, A. K. Menon, W. Jitkrittum, S. Jayasumana, F. X. Yu, S. Reddi, and

S. Kumar. 2021. Disentangling Sampling and Labeling Bias for Learning in

Large-Output Spaces. In ICML.
[47] S. J. Reddi, S. Kale, F.X. Yu, D. N. H. Rice, J. Chen, and S. Kumar. 2019. Stochastic

Negative Mining for Learning with Large Output Spaces. In AISTATS.
[48] T. Renter, A. Borisov, and M. De Rijke. 2016. Siamese CBOW: Optimizing word

embeddings for sentence representations. In ACL.
[49] D. Saini, A.K. Jain, K. Dave, J. Jiao, A. Singh, R. Zhang, andM. Varma. 2021. GalaXC:

Graph Neural Networks with Labelwise Attention for Extreme Classification. In

WWW.

[50] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. 2019. DistilBERT, a distilled version

of BERT: smaller, faster, cheaper and lighter. ArXiv (2019).

[51] E. Schultheis, M. Wydmuch, R. Babbar, and K. Dembczynski. 2022. On Missing

Labels, Long-Tails and Propensities in Extreme Multi-Label Classification. In

KDD.
[52] Y. Tagami. 2017. AnnexML: Approximate Nearest Neighbor Search for Extreme

Multi-label Classification. In KDD.
[53] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou. 2020. MiniLM: Deep

Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Trans-

formers. arXiv:2002.10957 [cs.CL]

[54] T. Wei, Z. Mao, J.-X. Shi, Y.-F. Li, and M.-L. Zhang. 2022. A Survey on Extreme

Multi-label Learning. arXiv preprint arXiv:2210.03968 (2022).
[55] M. Wydmuch, K. Jasinska, M. Kuznetsov, R. Busa-Fekete, and K. Dembczynski.

2018. A no-regret generalization of hierarchical softmax to extreme multi-label

classification. In NIPS.
[56] L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. Bennett, J. Ahmed, and A. Overwijk.

2021. Approximate nearest neighbor negative contrastive learning for dense text

retrieval. In ICLR.
[57] C. Xu, D. Tao, and C. Xu. 2016. Robust Extreme Multi-label Learning. In KDD.
[58] J. Yang, Z. Liu, S. Xiao, C. Li, D. Lian, S. Agrawal, A. Singh, G. Sun, and X. Xie.

2021. GraphFormers: GNN-nested Transformers for Representation Learning on

Textual Graph. In NeurIPS.
[59] H. Ye, Z. Chen, D.-H. Wang, and B. D. Davison. 2020. Pretrained Generalized

Autoregressive Model with Adaptive Probabilistic Label Clusters for Extreme

Multi-label Text Classification. In ICML.
[60] R. You, S. Dai, Z. Zhang, H. Mamitsuka, and S. Zhu. 2019. AttentionXML: Extreme

Multi-Label Text Classification with Multi-Label Attention Based Recurrent

Neural Networks. In NeurIPS.
[61] J. Zhang, W. C. Chang, H. F. Yu, and I. Dhillon. 2021. Fast multi-resolution

transformer fine-tuning for extreme multi-label text classification. In NeurIPS.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://arxiv.org/abs/2006.05324
https://arxiv.org/abs/2003.07820
https://arxiv.org/abs/2002.10957

	Abstract
	1 Introduction
	2 Related Works
	3 Problem Setting
	4 DEXA: Deep Encoders with auXiliary pArameters
	5 Theoretical Analysis
	5.1 Realizable Model

	6 Experiments
	7 Conclusions and Future Directions
	References

